Minggu, 13 Mei 2012

LASER


L A S E R

        Kata LASER adalah singkatan dari Light Amplification by Stimulated Emission of Radiation, yang artinya perbesaran intensitas cahaya oleh pancaran terangsang. Kata kuncinya adalah “perbesaran” dan “pancaran terangsang” yang akan menjadi jelas kemudian. Dewasa ini, 30 tahun setelah ditemukan, kata laser telah menjadi perbendaharaan kata sehari-hari. Peralatan yang menggunakan komponen laser dapat ditemukan dimana-mana, seperti pembaca kode harga di kasir pasar swalayan, laserprinter, compact - disk player, pemandu pesawat jet dan pertunjukan laser dalam festival musik.
        Laser merupakan sumber cahaya koheren yang monokromatik dan amat lurus. Cara kerjanya mencakup optika dan elektronika. Para ilmuwan biasa menggolongkannya dalam bidang elektronika kuantum. Sebetulnya laser merupakan perkembangan dari MASER, huruf M disini singkatan dari Microwave, artinya gelombang mikro. Cara kerja maser dan laser adalah sama, hanya saja mereka bekerja pada panjang gelombang yang berbeda. Laser bekerja pada spektrum infra merah sampai ultra ungu, sedangkan maser memancarkan gelombang elektromagnetik dengan panjang gelombang yang jauh lebih panjang, sekitar 5 cm, lebih pendek sedikit dibandingkan dengan sinyal TV - UHF. Laser yang memancarkan sinar tampak disebut laser - optik.

Prinsip kerja laser


        Terjadinya laser sudah diramalkan jauh hari sebelum dikembangkannya mekanika kuantum. Pada tahun 1917, Albert Einstein mempostulatkan pancaran imbas pada peristiwa radiasi agar dapat menjelaskan
kesetimbangan termal suatu gas yangsedang menyerap dan memancarkan radiasi. Menurut dia ada 3 proses yang terlibat dalam kesetimbangan itu, yaitu : serapan, pancarn spontan (disebut fluorensi) dan pancaran
terangsang ( atau lasing dalam bahasa Inggrisnya, artinya memancarkan laser). Proses yang terakhir biasanya diabaikan terhadap yang lain karena pada keadaan normal serapan dan pancaran spontan sangat dominan.
Sebuah atom pada keadaan dasar dapat dieksitasi ke keadaan tingkat energi yang lebih tinggi dengan cara menumbukinya dengan elektron atau foton. Setelah beberapa saatberada di tingkat tereksitasi ia secara acak akan segera kembali ke tingkat energi yanglebih rendah, tidak harus ke keadaan dasar semula. Proses acak ini dikenalsebagai fluoresensi terjadi dalam selang waktu rerata yang disebut umur rerata, lamanya tergantung pada keadaan dan jenis atom tersebut.
        Kebalikan dari umur ini dapat dipakai sebagai ukuran kebolehjadian atom tersebut terdeeksitasi sambil memancarkan foton yang energinya sama dengan selisih tingkat energi asal dan tujuan. Foton ini dapat saja diserap kembali oleh atom yang lain sehingga mengalami eksitasi tetapi dapat pula lolos keluar sistem sebagai cahaya. Sebetulnya atomatomyang tereksitasi tidak perlu menunggu terlalu lama untuk memancar secara  pontan, asalkan terdapat foton yang merangsangnya. Syaratnya foton itu harus memiliki energi yang sama dengan selisih tingkat energi asal dan tujuan.
Tinjauan dua tingkat energi dalam sebuah atom E1 dan E2, dengan E1 < E2. cacah atom yang berada di masing-masing tingkat energi adalah N1 dan N2. Untuk menggambarkan distribusi energi pada atom-atom itu dalam kesetimbangan termal berlakulah statistik Maxwell - Boltzmann :
N1 / N2 = exp ( E2 - E1 ) / kT (1)
        Persamaan ini menunjukkan bahwa dalam keadaan stimbang N1 selalu lebih besar daripada N2, tingkat energi rendah selalu lebih padat populasinya dibandingkan dengan tingkat yang lebih tinggi. Dalam keadaan tak setmbang terjadilah perpindahan populasi melalui ketiga proses serapan dan pancaran tersebut di atas.



Gambar 1 : Serapan, pancaran spontan dan pancaran terangsang

        Atom-atom di E2 dapat saja melompat ke E1 secara spontan dengan kebolehjadian transisinya A21 per satuan waktu. Apabila terdapat radiasi dengan frekuensi n dan rapat energi e ( n ), terjadilah transisi akibat serapan dari E1 ke E2, dengan kebolehjadian sebut saja B1 2.e ( n ) karena terlihat jelas kebolehjadian ini sebanding pula dengan rapat energi fotonnya. Pancaran spontan ini dapat pula merangsang transisi dari E2 ke E1 akibat interaksinya dengan atom-atom yang berada dalam keadaan tereksitasi E2, kebolehjadiannya B21. e ( n ). Sudah tentu semua transisi yang terjadi di sini berbanding lurus dengan populasi atom di tingkat energi asalnya masing-masing.
Perubahan N2 secara lengkap :




        Perubahan populasi ini disebabkan oleh pertambahan akibat serapan dan pengurangan akibat pancaran. Setelah tercapai kesetimbangan antara atom-atom itu dengan radiasinya, pengaruh serapan dan pancaran akan saling meniadakan dN2/dt = 0.




        Setelah digabungkan dengan persamaan (1), substitusi E2 - E1 = h. n (energi foton yang dilepaskan pada saat deeksitasi) dan manipulasi aljabar biasa didapatlah persamaan :




        Jika persamaan (4) ini dibandingkan dengan distribusi statistik Bose Einstein, tampak bahwa foton adalah boson, dan persamaan radiasi Planck dengan harga-harga :




        Persamaan (6) menunjukkan bahwa kebolehjadian atom-atom tersebut melakukan transisi serapan adalah sama dengan kebolehjadiannya melakukan transisi akibat pancaran terangsang. Tetapi pada keadaan normal pengaruh serapanlah yang lebih terasa karena populasi atom lebih besar di tingkat energi yang lebih rendah. Dari penjelasan di atas tampaknya ketiga proses : serapan, pancaran spontan dan terangsang, terjadi melalui suatu persaingan. Laser yang dihasilkan oleh pancaran terangsang dengan demikian hanya bisa terjadi jika pancaran terangsang dapat dibuat mengungguli dua proses yang lain.
Nisbah laju pancaran terangsang terhadap serapan dapat dihitung sebagai berikut.




        Dari persamaan ini tebukti tidaklah mungkin pancaran terangsang dapat mengungguli serapan pada kesetimbangan termal, karena N1 yang selalu lebih besar daripada N2. Laser bisa dibuat hanya jika N2 > N1 yang tentu saja tidak alamiah, keadaan terbalik seperti ini disebut inversi populasi. Inversi populasi ini harus dipertahankan selama laser bekerja, dan cara-caranya akan dijelaskan di bagian berikut Cara-cara untuk mencapai keadaan inversi populasi ini antara lain adalah pemompaan optis dan pemompaan elektris. Pemompaan optis adalah penembakan foton sedangkan pemompaan elektris adalah penembakan elektron melalui lucutan listrik. Untuk menuju keadaan inversi populasi pemompaan ini harus melakukan pemindahan atom ke tingkat eksitasi dengan laju yang lebih cepat dibandingkan dengan laju pancaran spontannya. Hal ini dapat dilakukan jika dipergunakan medium laser yang atom-atomnya memiliki tingkat energi yang metastabil. Sebuah tastabil memerlukan waktu yang relatif lebih lama sebelum terdeeksitasi dibandingkan dengan umurnya di tingkat eksitasinya yang lain.
        Dengan demikian pada saat pemompaan terus berlangsung, terjadilah kemacetan lalu lintas di tingkat metastabil ini, populasinya akan lebih padat dibandingkan dengan populasi tingkat energi di bawahnya. Populasi tingkat energi dasar kini sudah terlampaui populasi tingkat metastabil. Bila suatu saat secara spontan dipancarkan satu foton saja yang berenergi sama dengan selisih energi antara tingkat metastabil dengan tingkat dasar, ia akan memicu dan mengajak atom-atom lain di tingkat metastabil untuk kembali ke tingkat dasar.

        Dari persamaan ini tebukti tidaklah mungkin pancaran terangsang dapat mengungguli serapan pada kesetimbangan termal, karena N1 yang selalu lebih besar daripada N2. Laser bisa dibuat hanya jika N2 > N1 yang tentu saja tidak alamiah, keadaan terbalik seperti ini disebut inversi populasi. Inversi populasi ini harus dipertahankan selama laser bekerja, dan cara-caranya akan dijelaskan di bagian berikut Cara-cara untuk mencapai keadaan inversi populasi ini antara lain adalah pemompaan optis dan pemompaan elektris. Pemompaan optis adalah penembakan foton sedangkan pemompaan elektris adalah penembakan elektron melalui lucutan listrik. Untuk menuju keadaan inversi populasi pemompaan ini harus melakukan pemindahan atom ke tingkat eksitasi dengan laju yang lebih cepat dibandingkan dengan laju pancaran spontannya. Hal ini dapat dilakukan jika dipergunakan medium laser yang atom-atomnya memiliki tingkat energi yang metastabil. Sebuah tastabil memerlukan waktu yang relatif lebih lama sebelum terdeeksitasi dibandingkan dengan umurnya di tingkat eksitasinya yang lain.
        Dengan demikian pada saat pemompaan terus berlangsung, terjadilah kemacetan lalu lintas di tingkat metastabil ini, populasinya akan lebih padat dibandingkan dengan populasi tingkat energi di bawahnya. Populasi tingkat energi dasar kini sudah terlampaui populasi tingkat metastabil. Bila suatu saat secara spontan dipancarkan satu foton saja yang berenergi sama dengan selisih energi antara tingkat metastabil dengan tingkat dasar, ia akan memicu dan mengajak atom-atom lain di tingkat metastabil untuk kembali ke tingkat dasar.


Gambar 2 : Tingkat metastabil pada sistem laser 3 -tingkat


        Akibatnya atom-atom itu melepaskan foton-foton yang energi dan fasenya persis sama dengan foton yang mengajaknya tadi, terjadilah laser. Proses demikian inilah yang terjadi pada banyak jenis laser seperti pada laser ruby dan laser-laser gas. Pada laser uap tembaga yang terjadi adalah efek radiasi resonansi, inversi populasi dicapai dengan cara memperpanjang umur atom tereksitasi terhadap tingkat energi dasar, sedangkan umurnya terhadap tingkat metastabil tidak berubah. Dengan demikian inversi populasi terjadi antara tingkat energi tinggi dengan tingkat metastabil. Setelah laser dihasilkan, atom-atom akan banyak terdapat di tingkat metastabil. Koherensi keluaran laser bersifat spasial maupun temporal, semua foton memiliki fase yang sama. Mereka saling mendukung satu sama lain, yang secara gelombang dikatakan berinterferensi konstruktif, sehingga intensitasnya berbanding langsung kepada N2, dengan N adalah cacah foton. Jelaslah intensitasnya ini jauh lebih besar dibandingkan dengan intensitas radiasi tak - koheren yang  hanya sebanding dengan N saja. Syarat penting lainnya untuk menghasilkan laser adalah meningkatkan nisbah laju pancaran terangsang terhadap laju pancaran spontannya. Nisbah tersebut mudah sekali
didapat.



        Persamaan (8a) menunjukkan bahwa rapat energi e ( n ) harus cukup besar agar laser dapat dihasilkan.  Rapat energi foton ini dapat ditingkatkan dengan cara memberikan suatu rongga resonansi optik. Di rongga itulah rapat energi foton tumbuh menjadi besar sekali melalui pantulan yang berulang-ulang pada kedua ujung rongga, dan terjadilah perbesaran intensitas seperti yang ditunjukkan oleh nama laser. Pembuatan rongga

resonansi ini merupakan masalah yang memerlukan penanganan yang paling teliti pada saat membangun suatu sistem laser.
        Persamaan (8b) diperoleh dari gabungan (8a) dan (4). Kedua jenis pancaran itu akan sama pentingnya apabila selisih tingkat energi h. n memiliki orde yang sama malahan jauh lebih kecil dibandingkan dengan energi termal k.T. misalnya saja pada gelombang mikro pada suhu kamar. Oleh sebab itulah laser berenergi tinggi dengan frekuensi yangtinggi pula amat sulit dibuat, karena pancaran spontan akan lebih terbolehjadi.









1 komentar:

  1. ada laser yang biasa dipakai disuper market...
    ada laser untuk printer..

    terus laser untuk memotong besi/kaca/benda2 logam lainnya itu termasuk laser jenis apa yah

    BalasHapus